Fiveable

๐Ÿ”ขAlgebraic Number Theory Unit 2 Review

QR code for Algebraic Number Theory practice questions

2.4 Algebraic integers and minimal polynomials

๐Ÿ”ขAlgebraic Number Theory
Unit 2 Review

2.4 Algebraic integers and minimal polynomials

Written by the Fiveable Content Team โ€ข Last updated September 2025
Written by the Fiveable Content Team โ€ข Last updated September 2025
๐Ÿ”ขAlgebraic Number Theory
Unit & Topic Study Guides

Algebraic integers are complex numbers that are roots of monic polynomials with integer coefficients. They form a subring of complex numbers and play a crucial role in number fields, extending beyond rational integers to include non-rational algebraic integers.

Minimal polynomials are the monic polynomials of least degree with integer coefficients that have an algebraic integer as a root. They're always irreducible over rational numbers and their degree equals the field extension degree generated by the algebraic integer.

Algebraic Integers and Properties

Definition and Fundamental Characteristics

  • Algebraic integers comprise complex numbers serving as roots of monic polynomials with integer coefficients
  • Form a subring of complex numbers, exhibiting closure under addition and multiplication
  • Encompass all rational integers while extending beyond to include non-rational algebraic integers
  • Preserve algebraic integer status under addition and multiplication operations
  • Constitute a finitely generated Z-module within the ring structure of a number field
  • Possess rational integer values for their trace and norm
  • Exhibit divisibility properties analogous to rational integers (divisibility rules, prime factorization)

Mathematical Structure and Operations

  • Generate a ring structure within a number field, allowing for algebraic operations
  • Closure property ensures sum and product of two algebraic integers yield another algebraic integer
  • Trace of an algebraic integer $ฮฑ$ calculated as sum of its conjugates: $Tr(ฮฑ) = ฮฑ_1 + ฮฑ_2 + ... + ฮฑ_n$
  • Norm of an algebraic integer $ฮฑ$ computed as product of its conjugates: $N(ฮฑ) = ฮฑ_1 * ฮฑ_2 * ... ฮฑ_n$
  • Satisfy multiplicative property of norms: $N(ฮฑฮฒ) = N(ฮฑ)N(ฮฒ)$ for algebraic integers $ฮฑ$ and $ฮฒ$
  • Form ideals within their ring, enabling the study of ideal theory in algebraic number fields
  • Allow for generalization of unique factorization through ideal decomposition in Dedekind domains

Minimal Polynomial of an Algebraic Integer

Definition and Properties

  • Represents the monic polynomial of least degree with rational integer coefficients having the algebraic integer as a root
  • Always irreducible over rational numbers, ensuring no factorization into lower degree polynomials with rational coefficients
  • Degree equals the degree of field extension generated by the algebraic integer over rational numbers
  • All roots constitute conjugates of the given algebraic integer, forming a complete set of algebraically related elements
  • Coefficients expressible through elementary symmetric functions of the conjugates of the algebraic integer
  • Discriminant of minimal polynomial provides crucial information about the field extension (ramification, splitting behavior)
  • Serves as the defining polynomial for the number field generated by the algebraic integer

Computation and Applications

  • Found using characteristic polynomial and rational canonical form of matrix representation for multiplication by the algebraic integer
  • Characteristic polynomial $p(x)$ of a matrix $A$ defined as $p(x) = det(xI - A)$, where $I$ denotes the identity matrix
  • Rational canonical form simplifies the matrix to block diagonal structure, revealing the minimal polynomial
  • Utilized in determining the Galois group of the field extension generated by the algebraic integer
  • Plays crucial role in analyzing the splitting field and algebraic closure of number fields
  • Aids in computing integral basis and discriminant of number fields
  • Facilitates the study of ramification and decomposition of primes in algebraic number fields

Ring of Integers in a Number Field

Fundamental Concepts and Characterization

  • Number field defined as finite extension of rational numbers, denoted $K = \mathbb{Q}(ฮฑ)$ for some algebraic number $ฮฑ$
  • Ring of integers $O_K$ consists of all elements integral over the integers within the number field
  • Every element of $O_K$ qualifies as an algebraic integer, satisfying a monic polynomial with integer coefficients
  • Conversely, all algebraic integers within the number field belong to $O_K$, ensuring completeness
  • $O_K$ forms an integrally closed domain within the number field, crucial for ideal theory
  • Represents a Dedekind domain, enabling unique factorization of ideals into prime ideals
  • Integral closure property of $O_K$ in $K$ forms the basis for studying arithmetic in algebraic number fields

Proof Techniques and Implications

  • Proof involves demonstrating $O_K$ as integrally closed in the number field $K$
  • Utilizes the fact that $O_K$ serves as integral closure of rational integers in $K$
  • Employs techniques from commutative algebra, including properties of integrally closed domains
  • Highlights connection between algebraic integers and integral elements in ring extensions
  • Establishes foundation for studying ideal class groups and unit groups in number fields
  • Facilitates investigation of prime ideal decomposition and ramification in algebraic number theory
  • Crucial for understanding more advanced topics (class field theory, Diophantine equations)

Algebraic Integers vs Integral Basis

Integral Basis: Definition and Properties

  • Represents a basis for the ring of integers $O_K$ of a number field $K$ as a Z-module
  • Consists of algebraic integers generating all other algebraic integers in $K$ through integer linear combinations
  • Guarantees existence due to finiteness of $O_K$ as a Z-module (finite rank free abelian group)
  • Discriminant of integral basis relates to discriminant of the number field, providing important invariant
  • Number of elements in integral basis equals degree of number field extension over rationals
  • Allows representation of any algebraic integer $ฮฑ$ in $O_K$ as $ฮฑ = a_1ฯ‰_1 + a_2ฯ‰_2 + ... + a_nฯ‰_n$, where $ฯ‰_i$ form integral basis and $a_i$ integers
  • Plays crucial role in computations involving ideals and factorization in algebraic number fields

Relationship and Computational Aspects

  • Finding integral basis equivalent to determining complete ring of integers in number field
  • Integral basis elements themselves algebraic integers, but not all algebraic integers part of basis
  • Techniques for finding integral basis include analyzing trace form and index of submodules in $O_K$
  • Trace form defined as bilinear form $T(x,y) = Tr(xy)$ for $x,y$ in $O_K$, used to construct integral basis
  • Index of submodule $[O_K : Z[ฮฑ]]$ helps identify additional algebraic integers to include in basis
  • Computation often involves successive approximation, refining potential basis elements
  • Integral basis crucial for practical computations in algebraic number theory (ideal factorization, class group computation)