Fiveable

โž—Abstract Linear Algebra II Unit 7 Review

QR code for Abstract Linear Algebra II practice questions

7.1 Tensor products of vector spaces

โž—Abstract Linear Algebra II
Unit 7 Review

7.1 Tensor products of vector spaces

Written by the Fiveable Content Team โ€ข Last updated September 2025
Written by the Fiveable Content Team โ€ข Last updated September 2025
โž—Abstract Linear Algebra II
Unit & Topic Study Guides

Tensor products combine vector spaces, creating a new space that captures bilinear relationships. They're a powerful tool for studying multilinear algebra, allowing us to extend linear concepts to higher dimensions.

Understanding tensor products is crucial for grasping advanced topics in multilinear algebra. They provide a framework for working with complex structures and are essential in fields like quantum mechanics and machine learning.

Tensor product of vector spaces

Definition and properties

  • Tensor product of vector spaces V and W over field F denoted as V โŠ— W
  • V โŠ— W forms a vector space over F
  • Equipped with bilinear map โŠ—: V ร— W โ†’ V โŠ— W sending (v, w) to v โŠ— w
  • Elements of V โŠ— W consist of linear combinations of pure tensors v โŠ— w (v โˆˆ V, w โˆˆ W)
  • Satisfies distributivity over vector addition ((v1+v2)โŠ—w=v1โŠ—w+v2โŠ—w)((v_1 + v_2) \otimes w = v_1 \otimes w + v_2 \otimes w)
  • Compatible with scalar multiplication (c(vโŠ—w)=(cv)โŠ—w=vโŠ—(cw))(c(v \otimes w) = (cv) \otimes w = v \otimes (cw))

Universal property

  • Most general bilinear map from V ร— W
  • For any bilinear map f: V ร— W โ†’ U, unique linear map fฬƒ: V โŠ— W โ†’ U exists
  • Satisfies f = fฬƒ โˆ˜ โŠ—
  • Any bilinear map can be factored through tensor product
  • Allows reduction of multilinear problems to linear ones (matrix multiplication)

Constructing the tensor product

Free vector space approach

  • Start with free vector space F(V ร— W) generated by V ร— W
  • Define subspace R in F(V ร— W) generated by elements:
    • (v1+v2,w)โˆ’(v1,w)โˆ’(v2,w)(v_1 + v_2, w) - (v_1, w) - (v_2, w)
    • (v,w1+w2)โˆ’(v,w1)โˆ’(v,w2)(v, w_1 + w_2) - (v, w_1) - (v, w_2)
    • (cv,w)โˆ’c(v,w)(cv, w) - c(v, w) for v, vโ‚, vโ‚‚ โˆˆ V, w, wโ‚, wโ‚‚ โˆˆ W, c โˆˆ F
  • Tensor product V โŠ— W defined as quotient space F(V ร— W) / R
  • Canonical bilinear map โŠ—: V ร— W โ†’ V โŠ— W defined by (v, w) โ†ฆ [(v, w)]
    • [(v, w)] denotes equivalence class of (v, w) in quotient space

Verification of properties

  • Demonstrate constructed tensor product satisfies universal property
  • Show any bilinear map f: V ร— W โ†’ U factors uniquely through V โŠ— W
  • Verify resulting vector space meets all tensor product requirements
  • Prove distributivity and scalar multiplication compatibility
  • Confirm bilinearity of canonical map โŠ—

Basis for the tensor product

Finite-dimensional case

  • Given basis {vโ‚, ..., vโ‚™} for V and {wโ‚, ..., wโ‚˜} for W
  • Basis for V โŠ— W formed by {vแตข โŠ— wโฑผ | 1 โ‰ค i โ‰ค n, 1 โ‰ค j โ‰ค m}
  • Dimension of V โŠ— W equals product of dimensions: dim(V โŠ— W) = dim(V) ยท dim(W)
  • Any element in V โŠ— W uniquely expressed as linear combination of vแตข โŠ— wโฑผ
  • Coordinates of tensor arrangeable in n ร— m matrix
  • Examples:
    • Rยฒ โŠ— Rยณ has basis {eโ‚ โŠ— fโ‚, eโ‚ โŠ— fโ‚‚, eโ‚ โŠ— fโ‚ƒ, eโ‚‚ โŠ— fโ‚, eโ‚‚ โŠ— fโ‚‚, eโ‚‚ โŠ— fโ‚ƒ}
    • Cยฒ โŠ— Cยฒ has basis {eโ‚ โŠ— eโ‚, eโ‚ โŠ— eโ‚‚, eโ‚‚ โŠ— eโ‚, eโ‚‚ โŠ— eโ‚‚}

Infinite-dimensional case

  • Tensor product basis still formed by tensoring basis elements
  • Additional considerations for completeness may be necessary
  • Hilbert space tensor products require completion in appropriate topology
  • Examples:
    • Lยฒ(R) โŠ— Lยฒ(R) basis involves infinite tensor products of basis functions
    • Tensor product of function spaces (C[0,1] โŠ— C[0,1])

Uniqueness of the tensor product

Existence proof

  • Construct tensor product using universal property
  • Verify constructed space satisfies all required tensor product properties
  • Show bilinearity of canonical map โŠ—: V ร— W โ†’ V โŠ— W
  • Demonstrate universal property holds for constructed tensor product
  • Example: Construct Rยฒ โŠ— Rยณ and verify its properties

Uniqueness up to isomorphism

  • Consider two tensor products V โŠ— W and V โŠ—' W with bilinear maps โŠ— and โŠ—'
  • Use universal property to construct unique linear maps:
    • ฯ†: V โŠ— W โ†’ V โŠ—' W
    • ฯˆ: V โŠ—' W โ†’ V โŠ— W
  • Prove ฯ† and ฯˆ are inverses establishing isomorphism between V โŠ— W and V โŠ—' W
  • Show isomorphism preserves bilinear structure ฯ†(v โŠ— w) = v โŠ—' w for all v โˆˆ V, w โˆˆ W
  • Conclude tensor products are isomorphic as vector spaces
  • Equivalent as universal objects for bilinear maps from V ร— W
  • Example: Prove uniqueness of Rยฒ โŠ— Rยณ constructed using different methods