Tensor products combine vector spaces, creating a new space that captures bilinear relationships. They're a powerful tool for studying multilinear algebra, allowing us to extend linear concepts to higher dimensions.
Understanding tensor products is crucial for grasping advanced topics in multilinear algebra. They provide a framework for working with complex structures and are essential in fields like quantum mechanics and machine learning.
Tensor product of vector spaces
Definition and properties
- Tensor product of vector spaces V and W over field F denoted as V โ W
- V โ W forms a vector space over F
- Equipped with bilinear map โ: V ร W โ V โ W sending (v, w) to v โ w
- Elements of V โ W consist of linear combinations of pure tensors v โ w (v โ V, w โ W)
- Satisfies distributivity over vector addition
- Compatible with scalar multiplication
Universal property
- Most general bilinear map from V ร W
- For any bilinear map f: V ร W โ U, unique linear map fฬ: V โ W โ U exists
- Satisfies f = fฬ โ โ
- Any bilinear map can be factored through tensor product
- Allows reduction of multilinear problems to linear ones (matrix multiplication)
Constructing the tensor product
Free vector space approach
- Start with free vector space F(V ร W) generated by V ร W
- Define subspace R in F(V ร W) generated by elements:
- for v, vโ, vโ โ V, w, wโ, wโ โ W, c โ F
- Tensor product V โ W defined as quotient space F(V ร W) / R
- Canonical bilinear map โ: V ร W โ V โ W defined by (v, w) โฆ [(v, w)]
- [(v, w)] denotes equivalence class of (v, w) in quotient space
Verification of properties
- Demonstrate constructed tensor product satisfies universal property
- Show any bilinear map f: V ร W โ U factors uniquely through V โ W
- Verify resulting vector space meets all tensor product requirements
- Prove distributivity and scalar multiplication compatibility
- Confirm bilinearity of canonical map โ
Basis for the tensor product
Finite-dimensional case
- Given basis {vโ, ..., vโ} for V and {wโ, ..., wโ} for W
- Basis for V โ W formed by {vแตข โ wโฑผ | 1 โค i โค n, 1 โค j โค m}
- Dimension of V โ W equals product of dimensions: dim(V โ W) = dim(V) ยท dim(W)
- Any element in V โ W uniquely expressed as linear combination of vแตข โ wโฑผ
- Coordinates of tensor arrangeable in n ร m matrix
- Examples:
- Rยฒ โ Rยณ has basis {eโ โ fโ, eโ โ fโ, eโ โ fโ, eโ โ fโ, eโ โ fโ, eโ โ fโ}
- Cยฒ โ Cยฒ has basis {eโ โ eโ, eโ โ eโ, eโ โ eโ, eโ โ eโ}
Infinite-dimensional case
- Tensor product basis still formed by tensoring basis elements
- Additional considerations for completeness may be necessary
- Hilbert space tensor products require completion in appropriate topology
- Examples:
- Lยฒ(R) โ Lยฒ(R) basis involves infinite tensor products of basis functions
- Tensor product of function spaces (C[0,1] โ C[0,1])
Uniqueness of the tensor product
Existence proof
- Construct tensor product using universal property
- Verify constructed space satisfies all required tensor product properties
- Show bilinearity of canonical map โ: V ร W โ V โ W
- Demonstrate universal property holds for constructed tensor product
- Example: Construct Rยฒ โ Rยณ and verify its properties
Uniqueness up to isomorphism
- Consider two tensor products V โ W and V โ' W with bilinear maps โ and โ'
- Use universal property to construct unique linear maps:
- ฯ: V โ W โ V โ' W
- ฯ: V โ' W โ V โ W
- Prove ฯ and ฯ are inverses establishing isomorphism between V โ W and V โ' W
- Show isomorphism preserves bilinear structure ฯ(v โ w) = v โ' w for all v โ V, w โ W
- Conclude tensor products are isomorphic as vector spaces
- Equivalent as universal objects for bilinear maps from V ร W
- Example: Prove uniqueness of Rยฒ โ Rยณ constructed using different methods