๐ŸŽฒintro to statistics review

key term - Confidence intervals

Citation:

Definition

Confidence intervals provide a range of values that likely contain the true population parameter. They quantify the uncertainty of an estimate.

5 Must Know Facts For Your Next Test

  1. A 95% confidence interval means that if we took many samples, approximately 95% of them would contain the true population parameter.
  2. The width of a confidence interval depends on the sample size and variability; larger samples give narrower intervals.
  3. Confidence intervals for proportions are often calculated using the formula: $\hat{p} \pm Z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ where $\hat{p}$ is the sample proportion, $Z$ is the z-score associated with the desired confidence level, and $n$ is the sample size.
  4. The margin of error increases as the confidence level increases, meaning a wider interval for higher confidence levels.
  5. If assumptions (e.g., normality) are not met, alternative methods like bootstrapping might be used to construct confidence intervals.

Review Questions

Confidence intervals - (Intro to Statistics) - Vocab, Definition, Explanations | Fiveable | Fiveable